±ţ ͼţU491.12
ױ־룺A
ʱηֲн콻վֲ㷨
Сз
ͬôѧ·뽻ͨ̽صʵңϺ 201804
ժҪнͨվķʱԤ⣬ϵӪƻĵ˿ͳзʽѡʱԤȣн·ģʽ¿зŻҪ塣зʽǶȷõۣ˳˿·γɵĽǶȷ,˽Ƕȷģ˿͵ʧVPnȷﵽֵµij˿ʧ,AFCȡĿΪ֧ţϽǶȷģͶԳ˿ʧļ,һֻʱεվֲԤⷽ,ŷվ̨ͨгʵؿ֮Ŀɣ˺-гؿӰ춯̬ģͣоģ㷨ijн·ʵ㣬ԤΪͨзŻṩۺͷ֧,ӪƻʱԤ⼰ģ͵IJṩο
ؼʣ·䣻Ԥ⣻̬ģͣģʽнͨ
Algorithms of Station Passenger
Flow Forecast of Suburban Rail Transit Based on Distribution Time
Ding Xiao bing,
Xu Xing fang
(The Key
Laboratory of Road and Traffic Engineering, Ministry of Education, Shanghai,
201804)
Abstract: The stranded
passenger flow forecasting of suburban rail station is related to the adjustment
of operation plan, trip mode choice of passengers, and prediction of travel
time, especially for operation scheme optimization based on fast-slow mode is
of great importance. First of all, the theory of angle expenses was introduced,
from the cost of the way of transit trip and subway lines, which determined the
passenger choice. Used the passenger flow data obtained from AFC as data support,
presented a forecasting method of passenger flow based on periods distribution.
Secondly, analyzed the law of passenger flow and traffic exchange platform
based on train passenger status, proposed the waiting passenger train ridership
interaction model, and studied the algorithm. Finally, validate a suburban
line, which showed that the accuracy of the prediction results improved. This
can be as supplementary for railway traffic planning, guidance for passenger
flow, and be of certain reference and practical.
Key
words: railway transportationpassenger flow forecastdynamic interaction model of passenger flowexpress-local modeSuburban-urban line
1
йлȡóɹͬʱҲͬһĺ⣺شеӵԽأɱߣصλУǨȣн֮Ŀ֮нͨ·н·ͬ·Ÿǿʱշֲԣ߷峱ϫԣƽʱڿСվԡ߷岿ֳվн·Ŀ֯гȫѹӰͨˮƽˣн·վĿʱԤ⣬ΪгƻļʱԼճָṩݡ
[1]ͨʱԷ˻ʱмȨģԤ߽ϴ㷨֮ۺ뽻ǽоҪơ[2]ͨ·ʵʱ㷨̬ͨԤ·OD·ֵ·УδΪ̬ȡ·վ̨гϿʱֲ״,ʵʱϻоĿռƵ[3-5]ͳԤΧ˷ܽҪԤģعģʷ ƽģʱģʷƽģӦӳ֮ȷʱģȻʱ©ȱģʼĵҲΪһȡѧöԤԤԤȷȡõԤЧ
ͨ·վ̨ϵķӰվ̨ϺͼվǰʵؿͬվͨվԤҪϵͳ˿ؿǶȷó˿ʧʡ˿ȴʱ֮ϵ[6,7]ģӪʵʱԤҪҪһ̽о
ͨAFCվѰ˿̬ϵϻ·ĽǶȷģͣо˿͵ʧʼͨʽѡƫãӶվгģͣԤվʱοֲվ̨ԤΪͨзŻṩۺͷ֧,ӪƻʱԤ⼰ģ͵IJṩο
2 н·
н·ͨѾ߱һģĹ·ԽվгؿԤⲻվ̨ӵ˿࣬ʧȣȫ⡣ˣнĻ·ѡΪн·ʱοԤҪ塣
2.1վɷֲ
Կվʱεǡ֣վ̨ɿɽΪӸֲָ
壺
Ϊһ̣



ͬķֲ
ķǸʵ

㹻С
У
ǷǿΪ
IJɹ
ͨ£н˿ͻ°гʱ̱վڿģʽ£˿вͬͣվµĶгοɹѡ˿ͺʱ䶨Ϊ˿͵վʱijһгʱֹʱ䡣
Ϊ˿ܼʱһг赱˿͵Ϊ
ʱܵdz˸ôг
λ˿͵ѧΪôгȴʱѧ

1
г
ʱΪ
У
гΪ
ݷֲ壬
ʾ
λ˿ʱ
ǰ֣
ٵ
λ˿ͣУ
2
ʾгԱϿ
ʾг
ʣɷֱÿг
Ϊгš
2.2˿·ѡ
˿͵·ѡϵͨij˿Ӱ쵽߷վij˿бҪԳ˿͵·ѡΪ趨 3
(1)ӵΪ
nʵʣΪгʱij˻һӳӵöԳ˿·ѡƫӰı仯
(2)ĻʱΪ߶Գ˿·ѡƫӰǶģ֮Ӱ졣
(3)ó·ʵֱƫ붨ΪǶȷӳ˿ѡƫ·ƫ̶ı仯ӳѡƫӦ淽ƫʵ[8-11]㷽3ͬʱֵƫһ 0·ƫͼ 1ʾʽ3ʾ
ͼ1 Ƕȷʾ
Fig.1
Example of angle cost
3
ʾODԼm,յnĵk·ĽǶȷãλΪkm
ΪʵʳȣλΪkm
Ϊ
ƫյ㷽ƫǶȣȡֵΧΪ
Ϊܺ͡
Ƶ
Ƕȷֵı仯ӦƫǶȵĵԣͼ1ʾΪijͨ·IJͼ·OO1-12-23-3DյD䳤ȷֱΪ


ƫǶȷֱΪ
ֱã
ǶȷֵƫǶȵӶʱ仯ƫǶȵĵ˿ͶԽͨзʽѡĽǶȷӰʵ
ͨͷ˿ͳѡģͣ
У
1~
Ϊվ1վ
ΪǷöµij˿ʧʣ
ֱʾվʵʺʵؿгԱλΪˣ
ֱʾǶȷµijо롢ͨ·ʵʾ롣
3 ʱοԤģ㷨
3.1ģ
(1)н·ṹΪվ㼰
(2)гмƻ·ȫ쿪ʱ䡣ȫ췢Ϊ߷ƽʱ䡣
Ϊ
г뿪
վ̨ʱ̣
ʾг
վ̨ļʱ䡣
(3) վ̨˿ʵʱɣվ̨˿͵ʵʱɿͨվբȡָʱεĽվݣԲɼݴ벴ģͷ㡣
(4) г˿Ͷѡ˿ؽǶȷۣӵùƫǶȽСʱ˿Ϳѡзʽ˴Եʽͨӵͨʱ˿ɹתͨʣͨС¼
(5) վ̨
ʱε˿ڸгϵķ
ʾñеĵ
У
ֵ京Ϊ
վ̨ȷʱڵij˿г
ϵķ
3.2г-վ̨ʵʱԤģ
1ﺯ
վ˿͵Ԥ복վij˿гʽأԳ˿͵Ϊĺ
¼ijʱεij˿ͽվĿ
1 ʱεĽվϢ
Table 1 the amount of passengers in distribution time
ʱηֲ
|
ʣ
|
վ1
|
վ2
|
վ3
|
վ4
|
|
վj
|
6:00-9:00
|
|
|
|
|
|
|
|
9:00-17:00
|
|
|
|
|
|
|
|
17:00-19:00
|
|
|
|
|
|
|
|
19:00-
|
|
|
|
|
|
|
|
2г-վ̨˿ͷֲԤģ
ڸгijվʱʵʿؿվ̨˿ڲֵԸ гʵϿҲͬԸгվ̨ϳıΪѰҹɣ
г
վ̨ϿͱΪ
Ϊʵϳ˿г
ͣվǰվ̨
ȴ˿֮ȡһʱ
ڣ
վ̨ij˿һг
ϵķΪ
4
ڼ2ʱ
ڵվ̨
һг
ؿͺʣij˿ɱʾΪ
ڹģʱվ̨
ϣij˿½복վij˿ǻϾȷֲģվ̨δȡκκ֯ʩ˿ͬϳ
3.3ʵʱԤģ㷨
Step1ʼгͼʵ״̬һг
һվ̨
ʱ
(j=12mԤ·ȫ߹mվ)
Step2òDzͨʽ·ͨߵƫǶμΪ
Step3Ƕȷ
㳵վ˿͵ѡΪ
Step4гεִ·ϵһվ̨ʱгԱ
Step5ʽ(4)г
վʱʵؿ
ʣ
Step6г1Ϊٶг1վ̨Ĵ
в
£




˱


ƣֱ·վ
(12 ⋯j)Ƶг
6Ըгδÿһվ̨ʱΪʱڵ㣬гͣվڼļֻҪȡʱڵǰij˿͵ɣʱڵĵءÿǰһõϿԤķʱԡ
4 ʵ
4.1·ѡ
ԴϺͨ16߳˿ͳʾʵصʾ (20145·)Чջʾ3523ݣЧʾ7021ݡ˿ڸ߷ƽʱεijֱͬ߷(7:009:00 17:0019:00)ƽڣǰ߷ʱΣϴո߷ЧΪ5804飬ƽЧΪ4740顣òΪȷƫǶ˿ѡIJ궨VPn֧š
16·ͼ2ʾͨ·Ϊ16ߵͨзʽβù··ļнΪ
㣺
ͼ2 Ϻͨ16߽Ƕ
Fig.2 the angle direction of shanghai metro
16
ѡȡ16߷վբAFCΪֱȡ0.5h1hΪʱ2ʾ
2 16߳վ߷վ
Table 2 the amount of passengers during
morning and evening in stations of metro 16
վ
|
/0.5h
|
/h
|
·վ
|
1 221
|
2 314
|
·վ
|
631
|
934
|
ɽ·վ
|
742
|
1 274
|
ֶվ
|
492
|
1 014
|
ɳվ
|
121
|
392
|
ͷվ
|
200
|
278
|
³վ
|
921
|
1 628
|
Ұվ
|
325
|
591
|
վ
|
798
|
1 002
|
϶վ
|
617
|
1 108
|
Ժվ
|
705
|
957
|
ٸ۴
|
831
|
1 203
|
ˮ
|
1 102
|
2 140
|
ͨ OD·Ƕ
˼룬Ȼtֵ궨16ʽʧ VPnվԭʵ
վǰ 1/2ʱվ˿վһȨͨӰ[12]ʧģ 2.2ʽ3ʧ 16ɿƫվƫǶ 3ʾ
3 ·ƫǶȼ
Table 3 the angle and transportation
instead of metro line 16
վ
|
ƫ
|
Wӵ
|
Wƽӵ
|
ܲǶȷõ·
|
·
|
1112 '
|
0.282
|
0.281
|
975 ·976 ·989 ·ררߣרƽ«ר 11 · 26 ·
|
·
|
2314 '
|
0.181
|
0.080
|
ϴ
|
ɽ·
|
536 '
|
0.312
|
0.122
|
170 ·790 ·983 ·987 · 35 ·
|
ֶ
|
3116 '
|
0.212
|
0.087
|
796 ·1080 ·
|
|
|
ɳ
|
1216 '
|
0.211
|
0.142
|
1066 ·1101 ·ݷ
|
ͷ
|
2328'
|
0.111
|
0.111
|
1067 ·
|
³
|
343'
|
0.201
|
0.187
|
628 ·רߣʯרߣר 1 ·
|
Ұ
|
2144 '
|
0.312
|
0.201
|
רߣר
|
|
|
|
5201'
|
0.221
|
0.200
|
1038 ·1073 ·
|
϶
|
4912 '
|
0.231
|
0.231
|
1073 ·
|
Ժ
|
1437 '
|
0.182
|
0.182
|
רߣ«רߣ 7 ·
|
ٸ
|
1321'
|
0.244
|
0.201
|
1077 ·ר
|
|
ˮ
|
1627 '
|
0.215
|
0.121
|
1043 ·ˮԴר
|
2.2ʽ3 4߷ʧ VPƽʧVPƽ
4 ǶȷµСʱ˿ʧ복վ˿Աȣ/h
Table
4 the loss of passengers and normal amount under the cost of angle
վ
|
߷
|
߷ʧVPn
|
ƽ
|
ƽʧVPn
|
·վ
|
2 314
|
0.282
|
1 772
|
0.112
|
·վ
|
934
|
0.181
|
634
|
0.021
|
ɽ·վ
|
1 274
|
0.312
|
785
|
0.121
|
ֶվ
|
1 014
|
0.212
|
501
|
0.102
|
ɳվ
|
892
|
0.211
|
734
|
0.181
|
ͷվ
|
778
|
0.111
|
687
|
0.067
|
³վ
|
1 628
|
0.201
|
896
|
0.074
|
Ұվ
|
891
|
0.312
|
901
|
0.171
|
վ
|
1 002
|
0.221
|
971
|
0.091
|
϶վ
|
1 108
|
0.231
|
839
|
0.085
|
Ժվ
|
957
|
0.182
|
724
|
0.121
|
ٸ۴
|
1 203
|
0.244
|
825
|
0.078
|
ˮ
|
2 140
|
0.215
|
1 801
|
0.121
|
ͼ3Ƕȷ³վ˿ʧ
Fig3
the loss of passengers under the cost of angle
5 Ƕȷµij˿ʧ복վ˿Աȱ/h
Table 5 the loss amount and normal amount
of passengers under the cost of angle
վ
|
߷
|
G ʵ
|
ƽ
|
P ʵ
|
·վ
|
2 314
|
1 893
|
1 772
|
1 634
|
·վ
|
934
|
858
|
634
|
596
|
ɽ·վ
|
1 274
|
1 004
|
785
|
704
|
ֶվ
|
1 014
|
900
|
501
|
475
|
ɳվ
|
892
|
882
|
734
|
689
|
ͷվ
|
778
|
769
|
687
|
621
|
³վ
|
1 628
|
1 302
|
896
|
794
|
Ұվ
|
891
|
615
|
901
|
846
|
վ
|
1 002
|
881
|
971
|
894
|
϶վ
|
1 108
|
963
|
839
|
795
|
Ժվ
|
957
|
783
|
724
|
694
|
ٸ۴
|
1 203
|
1 030
|
825
|
794
|
ˮ
|
2 140
|
1 894
|
1 801
|
1 756
|
|
|
|
|
|
|
ͼ4 Ƕȷµij˿ʧ복վ˿Ա
Fig.4 the loss
amount and normal amount of passengers under the cost of angle
4.2ʱԤ
ÿĵ1гΪогվ̨Ĵϱ45ݣ
в


,




ֱ·վ
Ƶг
Ԥģ͵øʱοԤ6ʾ
6 ʱվԤ
Table 6 the forecast of passengers flow based
on distribution time
վ
|
߷
|
ƽ壨죩
|
߷
|
ƽ壨ҹ
|
·
|
12 031
|
8 610
|
11 201
|
8 721
|
·
|
9 574
|
7 141
|
9 845
|
6 321
|
ɽ·
|
9 414
|
6 571
|
9 216
|
5 014
|
ֶ
|
9 018
|
5 362
|
8 142
|
4 782
|
ɳ
|
8 124
|
5 217
|
9 345
|
3 587
|
ͷվ
|
10 250
|
6 057
|
9 714
|
5 214
|
³
|
9 217
|
4 325
|
8 521
|
4 241
|
Ұ
|
9 014
|
7 254
|
9 321
|
8 725
|
|
8 314
|
5 214
|
9 417
|
4 712
|
϶
|
11 401
|
8 472
|
11 247
|
8 914
|
Ժ
|
10 144
|
9 870
|
9 651
|
9 147
|
ٸ۴
|
9 524
|
8 901
|
9 041
|
8 521
|
ˮ
|
8 251
|
7 302
|
9 471
|
8 146
|
5
нͨ˿ͺʱοֲԤ⣬Ϊ˹ܲŶԿ֯ӪƻʵʱݣԳ߹滮óмƻԸվԤзʽ·ȡн·ֲԤ漰ڶ࣬۸Ӱ죬ĶЩӵӰϵ˷ͽģԽվ̨ͬʱε˿ڸгϵķ估վ̨˻վ̨-гԤģ͵ʵʱ㷨ͨʵ֤н·ģʽ³վԤ㷨Чԡԡ½վ˿ODֲԤⷽһо
οף
[1]Ŵ,𣮻ڿ˲ĹվʱԤ[J].ͨϵͳϢ,2011,11(4):154-159[ZHANG
C H, SONG R. Kalman Filter-Based Short-Term Passenger Flow Forecasting on Bus
Stop [J]. Journal of Transportation Systems Engineering and Information
Technology, 2011, 11(4):154-159]
[2]йͨ·ֲʵʱԤⷽ[J]ͬôѧѧȻѧ,2011,39(6):857-861[XU
R H. Real-time Forecast of Passenger Flow Distribution on Urban Rail Transit
Line [J]. JOURNAL OF TONGJI UNIVERSITY (NATURAL SCIENCE), 2011, 39(6):857-861]
[3],.ͨģ㷨[J]. ͬôѧѧ:Ȼѧ,2004,32(9):1158-1159[WU
X Y. Traffic Equilibrium Assignment Model Specially
for Urban Railway Network[J]. JOURNAL OF TONGJI
UNIVERSITY (NATURAL SCIENCE), 2004, 32(9):1158-1159]
[4],︣ȣйͨ˿·ѡģͼ㷨 [J].ͨϵͳϢ,2009,9(2):85-90[LIU
J F, SUN F L. Passenger Flow Route Assignment Model and Algorithm for Urban
Rail Transit Network [J]. Journal of Transportation Systems Engineering and
Information Technology, 2009, 9(2):85-90]
[5],˼̣״·гͼʵƽ̨۵о[J]ͨѧѧ,2002,26(05)12-18[MA J J, HU S
J. Study on Foundational Theory of Laboratorial Platform for Train Working
Diagram Based on Railway Network [J]. JOURNAL OF NORTHERN JIAOTONG UNIVERSITY,
2002, 26(05):12-18]
[5]Ԩ,ȣгͼѧģͼ㷨о[J]ѧ,2001,23(1)1-8
[PENG Q Y, WANG P. Study on general optimization model
and its solution for railway network train diagram [J]. Journal of the China
Railway Society, 2001, 23(1):1-8]
[6],,.ڶ·ijйֲͨģͼ㷨о[J]ѧ,2009,31(2):110-112[XU
R H, LUO Q, GAO P. Passenger Flow Distribution Model and Algorithm for Urban
Rail Transit Network Based on Multi-route Choice [J]. Journal of the China
Railway Society, 2009, 31(2):110-112]
[7]ɽ,˼̵ȣ״·гͼо[J]ѧ,1998,20(5)15-21[ZHOU L
S, HU S J. Network Hierarchy Parallel Algorithm of Automatic Train Scheduling
[J]. Journal of the China Railway Society, 1998, 20(5):15-21]
[8]H. Chen and X. Yao, Multiobjective neural network
ensembles based on regularized negative correlation learning, IEEE Trans.
Knowl. Data Eng. 2010, 22(12):1738C1751.
[9]H. Dam, H. Abbass, C. Lokan. Neural-based learning
classifier systems [J], IEEE Trans. Knowl. Data Eng. 2008, 20, (1):26C39
[10]S. Munder and D. Gavrila.An experimental study on
pedestrian classification [J].IEEE Trans. Pattern Anal. Mach. Intel. 2006.
28(11):1863C1868
[11]J. R. Koza, Genetic Programming: On the Programming
of Computers by Means of Natural Selection. Cambridge [M], MA: MIT Press, 1992.
[12] Y. Jin and B. Sendhoff. Pareto-based multiobjective
machine learning: An overview and case studies [J]. IEEE Trans. Syst., Man,
Cybern. C, Applicat. Rev, 2008. 38(3):397C415
飺
С1982-Уն̨ˣͬôѧͨ乤ѧԺʿоҪоΪͨӪ֯ŻE-maildxbsuda@163.comͨѶַϺɽ·88Ū2301ңʱࣺ201620 ϵ绰18017349689̶绰021-67791165
ʦз1963-Уڣʿʦλͬôѧ ͨ乤ѧԺоͨ֯·з֯Żϵ绰021-69589372 E-mailxfx@tongji.edu.cn
ոڣ2015-09-05
ĿȻ61272029
ĿϺпѧίԱмƻĿ11170501400
һߣС1982-Уն̨ˣʿоҪоͨг֯ŻE-maildxbsuda@163.com
ͨѶߣз1963-УճˣڣʿʦҪо·г֯E-mailxfx@tongji.edu.cn